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Abstract. A new site percolation model, directed spiral percolation (DSP), under both directional and ro-
tational (spiral) constraints is studied numerically on the square lattice. The critical percolation threshold
pc ≈ 0.655 is found between the directed and spiral percolation thresholds. Infinite percolation clusters are
fractals of dimension df ≈ 1.733. The clusters generated are anisotropic. Due to the rotational constraint,
the cluster growth is deviated from that expected due to the directional constraint. Connectivity lengths,
one along the elongation of the cluster and the other perpendicular to it, diverge as p → pc with different
critical exponents. The clusters are less anisotropic than the directed percolation clusters. Different mo-
ments of the cluster size distribution Ps(p) show power law behaviour with |p − pc| in the critical regime
with appropriate critical exponents. The values of the critical exponents are estimated and found to be
very different from those obtained in other percolation models. The proposed DSP model thus belongs to a
new universality class. A scaling theory has been developed for the cluster related quantities. The critical
exponents satisfy the scaling relations including the hyperscaling which is violated in directed percolation.
A reasonable data collapse is observed in favour of the assumed scaling function form of Ps(p). The results
obtained are in good agreement with other model calculations.

PACS. 64.60.-i General studies of phase transitions – 83.80.Gv Electro- and magnetorheological fluids –
72.80.Tm Composite materials

1 Introduction

Recently, there is strong interest in studying properties
of electro-rheological and magneto-rheological fluids [1],
magnetic semiconductors [2], and composite materials [3]
because of their industrial applications. A new site perco-
lation model, directed spiral percolation (DSP), proposed
here could be applied in general to study their rheologi-
cal, electrical and magnetic properties. The DSP model is
constructed imposing both directional and rotational con-
straints on the ordinary percolation (OP) model [4]. The
directional constraint is in a fixed direction in space and
the empty sites in that direction are accessible to occu-
pation. Due to the rotational constraint the sites in the
forward direction or in a rotational direction, say clock-
wise, are accessible to occupation. The direction of the ro-
tational constraint is not fixed in space and it depends on
the direction from which the present site is occupied. For
charged particles, the directional constraint in the model
could arise from an electric field along a particular direc-
tion in the plane of the lattice and the rotational con-
straint may arise from a magnetic field applied perpendic-
ular to the plane. The model will also be applicable to the
physical situations corresponding to the presence of other
kinds of directional and rotational constraints.

The effect of two different external constraints, direc-
tional constraint and rotational (spiral) constraint, on the
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ordinary percolation model have been studied indepen-
dently. The corresponding models are known as directed
percolation (DP) model [5] and spiral percolation (SP)
model [6]. The DP model has applications in self-organized
criticality [7], reaction diffusion systems [8], nonlinear ran-
dom resistor networks [9] etc. The SP model has been
applied in studying spiral forest fire [10], pinning of in-
terfaces [11], and diffusion under rotational bias in disor-
dered systems [12]. It is observed that in the presence of
an external constraint the critical properties of the sys-
tem as well as the universality class of the OP model are
changed [13]. The critical exponents associated with dif-
ferent cluster related quantities in the DP and SP models
are not only different but also different from those in the
case of the OP model. The DP and SP models then belong
to two different universality classes than that of the OP
model.

In this paper, the proposed DSP model is studied nu-
merically on the square lattice in two dimensions (2D).
The external constraints in the model determine the near-
est empty sites available for occupation. A single cluster
growth Monte Carlo (MC) algorithm is developed for this
model under both the external constraints. Critical per-
colation probability pc, at which a spanning (or infinite)
cluster appears for the first time, is determined. The span-
ning clusters are found fractals. The clusters generated in
the OP and the SP models are isotropic. In DP, the clus-
ters are anisotropic and elongated along the directional
constraint. The clusters generated in the case of the DSP
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Fig. 1. Selection of empty nearest neighbors of an occupied site for occupation. Black circles are the occupied sites and open
circles are the empty sites. Two thick long arrows from left to right represent the directional constraint. The presence of clockwise
rotational constraint is shown by the encircled dots. The eligible empty nearest neighbors of the central occupied site will be
selected here for occupation. The direction from which the central site is occupied is indicated by a short thick arrow. The
dotted arrow indicates the sites allowed by the directional constraint and the thin arrows indicate the sites allowed by the
rotational constraint. In (a), the central site is occupied from the left and the sites 3 and 4 are accessible to occupation. In (b),
the central site is approached from the top and sites 1, 3 and 4 could be occupied. In (c), the central site is occupied from the
right and 1, 2, and 3 are probable for occupation. Notice that the site 3, already an occupied site, could be reoccupied from a
different direction. In (d), the central site is approached from the below and sites 2 and 3 are the probable sites for occupation.

model are anisotropic but they grow in a direction differ-
ent from the directional constraint due to the presence of
the rotational constraint. A new type of cluster is thus
generated in this model. The connectivity length expo-
nents ν‖ and ν⊥ are estimated. ν‖ is approximately equal
to the connectivity exponent ν of OP but both ν‖ and ν⊥
are different from those obtained in DP. The clusters are
less anisotropic than DP clusters. Different moments of the
cluster size distribution Ps(p) become singular as p → pc

with their respective critical exponents. The values of the
critical exponents obtained here are different from those
obtained in other percolation models like OP, DP, and SP.
The DSP model then belongs to a new universality class. A
scaling theory is developed. The critical exponents satisfy
the scaling relations within error bars including the hyper-
scaling which is violated in DP. A reasonable data collapse
is observed in support of the assumed scaling function
form of Ps(p). The results obtained in this model are in
good agreement with the results obtained in the study of
magnetoresistance in a model of 3-constituents composite
material [14].

2 The DSP model

A square lattice of size L × L is considered. A directional
constraint from left to right and a clockwise rotational
constraint are imposed on the system. Due to the direc-
tional constraint any empty site on the right of an occu-
pied site could be occupied in the next Monte Carlo (MC)
time step. Due to the rotational constraint the empty
sites in the forward direction or in the clockwise direc-
tion can be occupied. To generate clusters under these
two constraints a single cluster growth algorithm is de-
veloped following the original algorithm of Leath [15]. In
this algorithm, the central site of the lattice is occupied

with unit probability. All four nearest neighbors to the
central site can be occupied with equal probability p in
the first time step. As soon as a site is occupied, the di-
rection from which it is occupied is assigned to it. In the
next MC time step, two empty sites due to the rotational
constraint and the site on the right due to the directional
constraint will be eligible for occupation for each occu-
pied site in the previous time step. This is illustrated in
Figure 1. The directional constraint is represented by two
long arrows from left to right. The presence of the rota-
tional constraint is shown by the encircled dots. The black
circles represent the occupied sites and the open circles
represent the empty sites. The empty nearest neighbors
of the central occupied site will be selected for occupation
in this step. The direction from which the central site is
occupied is represented by a short thick arrow. The dotted
arrow indicates the eligible empty site for occupation due
to directional constraint and the thin arrows indicate the
eligible empty sites for occupation due to the rotational
constraint. Since the directional constraint is to the right,
site 3, an empty site on the right of the occupied site,
is always eligible for occupation. The sites accessible to
occupation due to the rotational constraint will be iden-
tified now. The rotational constraint acts in the forward
or in the clockwise direction and depends on the direction
of approach to the present occupied site. In Figure 1a,
the central site is occupied from site 1 on the left. Thus,
site 3 in the forward direction and site 4 in the clockwise
direction are the eligible sites for occupation due to the
rotational constraint. In this situation, sites 3 and 4 are
then the only eligible sites for occupation in the next time
step due to both the constraints. In Figure 1b, the central
site is occupied from site 2 on the top and thus, sites 4
and 1 are the eligible sites for occupation due to the ro-
tational constraint. The available sites for occupation are
1, 3 and 4 due to both the constraints in this case. In
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Figure 1c, the eligible sites for occupation are 1 and 2 due
to the rotational constraint and site 3 due to the direc-
tional constraint. Note that, site 3 is already an occupied
site and could be reoccupied from a different direction.
A site is forbidden for occupation from the same direc-
tion. On the square lattice, a site then could be occupied
at most 4 times from 4 possible directions. This is unlike
the case of the ordinary and directed percolations where
a site is occupied only once. In Figure 1d, sites 2 and 3
are eligible for occupation due to both the constraints. It
can be seen that the direction of the rotational constraint
is not fixed in space and depends on the previous time
step whereas that of the directional constraint remains
fixed in space. In that sense, the directional constraint is
a global constraint and the rotational constraint is a local
constraint in the model. After selecting the eligible sites
for occupation, they are occupied with probability p. The
coordinate of an occupied site in a cluster is denoted by
(x,y). Periodic boundary conditions are applied in both
directions and the coordinates of the occupied sites are
adjusted accordingly whenever the boundary is crossed.
At each time step the span of the cluster in the x and y
directions Lx = xmax − xmin and Ly = ymax − ymin are
determined. If Lx or Ly ≥ L, the system size, then the
cluster is considered to be a spanning cluster. The critical
percolation probability pc is defined as below which there
is no spanning cluster and at p = pc a spanning cluster
appears for the first time in the system.

A typical spanning or infinite cluster generated on a
128 × 128 square lattice at p = 0.655 is shown in Fig-
ure 2. The black dots represent the occupied sites. The
cross near to the upper left corner is the origin of the
cluster (it was the central site of the lattice). The thick
arrows from left to right at the top and bottom represent
the directional constraint. The encircled points in the up-
per right and lower left corners represent the existence
of the clockwise rotational constraint. Notice that all the
dangling ends are clockwisely turned as it is expected.
The cluster is highly rarefied. Holes of all possible sizes
are there. The elongation of the cluster is almost along
the left upper to the right lower diagonal of the lattice
and not along the directional constraint applied in the x
direction. The geometry of the infinite clusters in other
percolation models are the following. In OP, the clusters
are isotropic. In DP, the anisotropic clusters are elongated
along the applied field [16]. In SP, the clusters are compact
and isotropic [17]. Not only the geometry but also the in-
ternal structure, highly rarefied with curly dangling ends,
of the cluster is different from that of the infinite clusters
in other percolation models. A new type of anisotropic
cluster is thus generated in the DSP model.

3 Scaling theory

The cluster related quantities and their singularities
at p = pc are defined here. Scaling relations among the
critical exponents describing the singularities of the clus-
ter related quantities will also be established. The cluster

Fig. 2. An infinite cluster on a 128 × 128 square lattice at
p = 0.655 is shown. The black dots are the occupied sites.
The cross on the upper left corner is the origin of the cluster.
The thick arrows on the top and bottom from left to right
represent directional constraint. The presence of the clockwise
rotational constraint is shown by the encircled dots. The cluster
is highly rarefied and has holes of almost all possible sizes. The
elongation of the cluster is along the upper left to the lower
right diagonal and not along the directional constraint. The
dangling ends are clockwisely rotated.

size distribution is defined as

Ps(p) =
Ns

Ntot
(1)

where Ns is the number of s-sited clusters in a total of Ntot

clusters generated. In the single cluster growth method,
the origin is occupied with unit probability. The scaling
function form of the cluster size distribution is then as-
sumed to be

Ps(p) = s−τ+1f[sσ(p − pc)] (2)

where τ and σ are two exponents.
The order parameter of the percolation transition is

the probability that a site belongs to a spanning (or infi-
nite) cluster and here it is defined as P∞ = p−p

∑′
s Ps(p).

The sum is over all the finite clusters and it is indicated by
a prime. The leading singularity of P∞ will be governed by∑′

s Ps(p), the zeroth moment of cluster size distribution.
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P∞ goes to zero as p → pc from the above with a critical
exponent β. The exponent β is defined as

P∞ ∼ (p − pc)β . (3)

An important cluster related quantity is the average
cluster size χ. In the single cluster growth method it is
the first moment of the cluster size distribution Ps(p) and
defined as χ =

∑′
s sPs(p) where the sum is over the fi-

nite clusters. Two next higher moments χ1 and χ2 are
also defined as χ1 =

∑′
s s2Ps(p) and χ2 =

∑′
s s3Ps(p). In

the present context these higher moments have no physi-
cal meaning but might be useful in particular situations.
The moments χ, χ1, and χ2 diverge with their respective
critical exponent γ, δ, and η at p = pc. The critical expo-
nents γ, δ, and η are defined as

χ ∼ |p − pc|−γ , χ1 ∼ |p − pc|−δ, χ2 ∼ |p − pc|−η. (4)

Since the cluster related quantities are just different mo-
ments of the cluster size distribution function Ps(p) then
the critical exponents associated with them are not all in-
dependent. All the critical exponents could be expressed
in terms of the exponents τ and σ needed to describe Ps(p)
(Eq. (2)). It could be shown that the kth moment of Ps(p)
become singular as

Σ′
ss

kPs(p) ∼ (p − pc)−(k−τ+2)/σ. (5)

Putting the value of k, the order of the moment, in equa-
tion (5) one could obtain the following scaling relations

β = (τ − 2)/σ, γ = (3 − τ)/σ, δ = (4 − τ)/σ,

and η = (5 − τ)/σ. (6)

Eliminating τ and σ, scaling relations between β, γ, δ,
and η could be obtained as

δ = β + 2γ, η = 2δ − γ. (7)

Since the clusters generated here are anisotropic in na-
ture, two lengths, ξ‖ and ξ⊥, are needed to describe the
connectivity of the occupied sites. ξ‖ is the connectivity
length along the elongation of the cluster and ξ⊥ is the
connectivity length along the perpendicular direction to
the elongation. To measure ξ‖ and ξ⊥ the moment of in-
ertia tensor T, a 2 × 2 matrix here, is calculated. For a
s-sited cluster, the xy component of the tensor is given by

Txy =
s∑

�=1

(x� − x0)(y� − y0) (8)

where x� and y� are the x and y coordinates of the �th
site and (x0,y0) is the coordinate of the center of mass
of the cluster. The radii of gyration R‖(s) and R⊥(s)
with respect to two principal axes could be obtained as
R2

‖(s) = λ1/s and R2
⊥(s) = λ2/s where λ1 is the largest

eigenvalue and λ2 is the smallest eigenvalue of the 2 × 2
moment of inertia matrix T. R⊥ is about the axis passing
through (x0,y0) and along the elongation of the cluster

and R‖ is about the axis perpendicular to the elongation
and passing through (x0,y0). The connectivity lengths now
can be determined as

ξ2
‖ =

2
∑′

s R2
‖(s)sPs(p)

∑′
s sPs(p)

, and ξ2
⊥ =

2
∑′

s R2
⊥(s)sPs(p)

∑′
s sPs(p)

·
(9)

The correlation lengths ξ‖ and ξ⊥ diverge with two differ-
ent critical exponents ν‖ and ν⊥ as p → pc. The critical
exponents ν‖ and ν⊥ are defined as

ξ‖ ∼ |p − pc|−ν‖ , ξ⊥ ∼ |p − pc|−ν⊥ . (10)

The cluster mass is given by the number of sites s in the
cluster and is expected to scale as s ≈ R‖R

(df−1)
⊥ at p =

pc, and it should go as s ≈ R‖R
(d−1)
⊥ above pc, where d is

the spatial dimension of the lattice and df is the fractal
dimension of the infinite clusters generated on the same
lattice. The percolation probability P∞ is the ratio of the
number of sites on the infinite cluster to the total number
of sites,

P∞ =
R‖R

(df−1)
⊥

R‖R
(d−1)
⊥

(11)

for R‖ < ξ‖ and R⊥ < ξ⊥. Assuming R‖ ∼ ξ‖ and
R⊥ ∼ ξ⊥, two hyperscaling relations could be obtained as

ν⊥(df − 1) + ν‖ =
1
σ

and (d − 1)ν⊥ − β = ν⊥(df − 1).

(12)
Eliminating df from the above relations another scaling
relation could be obtained as

(d − 1)ν⊥ + ν‖ = γ + 2β = 2δ − 3γ = 3η − 4δ. (13)

In the following, the values of the critical exponents
will be determined and the scaling relations will be
verified.

4 Results and discussions

Simulation is performed on a square lattice of size 210×210.
The critical probability pc at which a spanning cluster
appears for the first time in the system is determined first.
The probability to have a spanning cluster is given by

Psp =
nsp

Ntot
= 1 −

∑

s

′P s(p) (14)

where nsp is the number of spanning clusters out of total
Ntot = 104 number of clusters generated. In Figure 3, Psp

is plotted against the probability of occupation p. Note
that, Psp is not going to zero sharply at a particular value
of p. This is due to the finite size of the lattice chosen
here. The critical probability pc is then determined from
the maximum slope of the curve Psp versus p. In the inset
of Figure 3 the slope dPsp/dp is plotted against p. It can be
seen that the threshold pc is at 0.655±0.001 corresponding
to the maximum slope. The derivative is calculated using
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Fig. 3. Plot of spanning probability Psp versus p (circles). In
the inset the slope dPsp/dp is plotted against p (squares). The
critical probability pc is determined from the maximum slope
and it is found pc = 0.655 ± 0.001 as indicated by an arrow.

the central difference method for the data points collected
in an interval of 0.001. Note that, the value of pc obtained
here for the DSP model is slightly above the value of pc of
the directed percolation pc(DP ) ≈ 0.6445 [16] and below
the spiral percolation threshold pc(SP ) ≈ 0.712 [17]. It is
expected. Because, the rotational constraint tries to make
the clusters compact by reoccupying the occupied sites of
the directed clusters and, at the same time, the directional
constraint tries to elongate the compact spiral clusters.

The infinite cluster, shown in Figure 2, generated on
a 128 × 128 square lattice has holes of almost all pos-
sible sizes. It seems that the infinite clusters are self-
similar and fractals. The fractal dimension df of the in-
finite clusters generated on the original 210 × 210 lattice
is determined by the box counting method. The number
of boxes NB(ε) is expected to vary with the box size ε
as NB(ε) ∼ εdf where df is the fractal dimension. In
Figure 4, NB(ε) is plotted against the box size ε. The
data are averaged over 512 samples. A reasonably good
straight line is obtained in the log-log scale. The fractal
dimension is found df = 1.733 ± 0.005. The error is due
to the least square fitting of the data points taking into
account the statistical error of each point. The fractal di-
mension df ≈ 1.733 (≈ 12/7) obtained here is the smallest
among the fractal dimensions obtained in other percola-
tion models. The values of df in other percolation mod-
els are: df (OP ) = 91/48 [18], df (DP ) ≈ 1.765 [19], and
df (SP ) ≈ 1.957 [17]. Also notice that the fractal dimen-
sion df (DSP ) obtained here is little higher than the frac-
tal dimension 1.64 of ordinary lattice animals [20], large
OP clusters below pc. The infinite cluster generated in
the DSP model is then the most rarefied one among the
infinite clusters obtained in all four percolation models.

Next, the values of the critical exponents γ, δ, and η
are estimated. The average cluster size χ and two other

1 3 5 7
log2ε
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g 2N

B
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)

Fig. 4. Number of boxes NB(ε) is plotted against the box
size ε. Data are averaged over 512 samples. The fractal dimen-
sion is found df = 1.733 ± 0.005.

−7 −6 −5 −4 −3 −2 −1
log2|p−pc|

0

10

20

30

40

lo
g 2χ

, l
og

2χ
1, 

lo
g 2χ

2

2
−10

2
−9

2
−8

2
−7

1/L
0

4

8

γ,
δ,

η

Fig. 5. Plot of the first, second and third moments χ, χ1,
and χ2 of the cluster size distribution versus |p− pc|. Different
symbols are: circles for χ, squares for χ1, and triangles for χ2.
The corresponding critical exponents are found as γ = 1.85 ±
0.01, δ = 4.01±0.04, and η = 6.21±0.08. In the inset, the values
of the exponents γ (©), δ (�) and η (�) are plotted against
the system size 1/L. Extrapolating to the infinite system size
(1/L = 0), the values of the exponents obtained are γ ≈ 1.85,
δ ≈ 4.01, and η ≈ 6.21.

higher moments χ1 and χ2 are measured generating 104

finite clusters below pc for six different p values. In Fig-
ure 5, χ, χ1, and χ2 are plotted against |p − pc|. The
circles represent χ, the squares represent χ1 and the tri-
angles represent χ2. The values of the exponents obtained
are γ = 1.85 ± 0.01, δ = 4.01 ± 0.04, and η = 6.21 ± 0.08.
The errors quoted here are the standard least square fit
error taking into account the statistical error of each single
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Table 1. Comparison of the values of the critical exponents β, γ, τ , σ, ν, and df in the case of ordinary (OP), directed (DP),
spiral (SP), and directed spiral (DSP) percolation on the square lattice. The values of the critical exponents of the DSP model
are different from the other models. The values within parenthesis are the nearest rational fractions of the values of the critical
exponents. These rational fractions satisfy the scaling relations exactly. The DSP model belongs to a new universality class.

Percolation β γ τ σ ν df

Models

OP [18] 5/36 43/18 187/91 36/91 4/3 91/48

DP [19,21] 0.277 2.2772 2.108 0.3915 ν⊥ = 1.0972 1.765

±0.002 ±0.0003 ±0.001 ±0.0004 ±0.0006

ν‖ = 1.733

±0.001

SP [17] 0.048 2.19 2.022 0.447 1.116 1.957

±0.011 ±0.07 ±0.004 ±0.014 ±0.003 ±0.009

DSP 0.31 1.85 2.16 0.459 ν⊥ = 1.12 1.733

±0.01 ±0.01 ±0.20 ±0.004 ±0.03 ±0.005

(1/3) (11/6) (28/13) (6/13) (7/6) (12/7)

ν‖ = 1.33

±0.01

(4/3)

data point. The values of the exponents γ, δ, and η are
also determined by the same Monte Carlo technique on
the square lattices of three different smaller sizes 29 × 29,
28 × 28, and 27 × 27 to check the finite system size effects
on the data. The values of the exponents γ (circles), δ
(squares), and η (triangles) for different system sizes are
plotted against the system size 1/L in the inset of Fig-
ure 5. It is then extrapolated upto L → ∞, the infinite
system size. The extrapolated values of the exponents are
marked by crosses and the numerical values obtained are
γ ≈ 1.85, δ ≈ 4.01, and η ≈ 6.21, the same as that of the
system size 210 × 210. These values of exponents are now
used to verify the scaling relations obtained in Section 3.
One of the scaling relations η = 2δ − γ obtained in equa-
tion (7) is checked now. The value of 2δ−γ = 6.17 is very
close to the value of the exponent η = 6.21. The scaling re-
lation η = 2δ− γ is then satisfied within error bars. Using
the scaling relation δ = β + 2γ (Eq. (7)), the value of the
exponent β is obtained as β = 0.31 ± 0.06. The error has
propagated from the errors of γ and δ. Independent esti-
mation of the exponent β becomes difficult because of the
presence of curvature in the plot of P∞ versus (p− pc) in
the log-log scale for p > pc. This may be due to dominat-
ing corrections to scaling to the leading singularity of P∞.
The values of the exponents τ and σ can also be estimated
using the scaling relations in equation (6). Three different
values of τ could be obtained as τ1 = (3δ − 4γ)/(δ − γ) =
2.14 ± 0.18, τ2 = (4η − 5δ)/(η − δ) = 2.18 ± 0.28, and
τ3 = (3η−5γ)/(η−γ) = 2.15±0.11. The estimate of τ can
be taken as the average of τ1, τ2 and τ3 and it is given by
τ = 2.16±0.20. Similarly σ = 0.459±0.015 is determined
from σ1 = 1/(δ − γ) = 0.463 ± 0.011, σ2 = 1/(η − δ) =
0.455 ± 025, and σ3 = 2/(η − γ) = 0.459± 0.009. The er-
rors quoted here are the propagation errors. A comparison
between the values of the exponents obtained in different
percolation models is made in Table 1. It can be seen
that the values of the exponents obtained in this model
are very different from those obtained in other percolation

models like OP, DP, and SP. The magnitude of β is the
largest and the magnitude of γ is the smallest among the
four models. The DSP model then belongs to a new uni-
versality class. The values of the exponents obtained here
could be approximated to the nearest rational fractions as
β ≈ 1/3, γ ≈ 11/6, δ ≈ 24/6, η ≈ 37/6, τ ≈ 28/13 and
σ ≈ 6/13. Surprisingly they satisfy all the scaling relations
in equations (6, 7) exactly.

The connectivity lengths, ξ‖ and ξ⊥, for the system
size 210 × 210 are plotted against |p − pc| in Figure 6.
The squares represent ξ‖ and the circles represent ξ⊥.
The corresponding exponents ν‖ and ν⊥ are obtained as
ν‖ = 1.33± 0.01 and ν⊥ = 1.12± 0.03. The errors quoted
here are the least square fit errors. In the inset of Figure 6,
ν‖ (squares) and ν⊥ (circles) are plotted against different
system sizes 1/L. The exponent values are extrapolated
upto L → ∞ and the extrapolated values are ν‖ ≈ 1.33
and ν⊥ ≈ 1.12, the same as obtained for the system size
210 × 210. There are few things to notice. First, the value
of ν‖ is almost equal to the connectivity exponent of ordi-
nary percolation, ν(OP ) = 4/3 [18]. Recently, a study of
magnetoresistance of a three-component composites con-
sisting of cylindrical insulator and perfect conductors in a
metallic host film is made by Barabash et al. [14]. Since the
Hall effect will generate an electric field with a component
perpendicular to the plane of the film with an in-plane
applied current, their system appears inherently three di-
mensional (3D). However, the electric field perpendicu-
lar to the film plane vanishes because of the presence of
columnar perfect conductor. Thus, their 3D problem re-
duces to that of calculating the effective conductivity of
a 2D composites of perfect insulator and perfect conduc-
tor [3,14]. The results obtained in the model of composite
material by Barabash et al. [14] then could be compared
with the results of the present DSP model in 2 dimen-
sions. It is found by Barabash et al. [14] that the corre-
lation length exponent is 4/3 independent of anisotropy.
The correlation length exponent quoted there is equivalent
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Fig. 6. The connectivity lengths, ξ‖ and ξ⊥, are plotted
against |p − pc|. The circles represent ξ⊥ and the squares rep-
resent ξ‖. The critical exponents are found as ν‖ = 1.33± 0.01
and ν⊥ = 1.12 ± 0.03. In the inset, the values of ν‖ (�) and
ν⊥ (©) are plotted against the system size 1/L. The values
of the exponents are extrapolated upto L → ∞. The extrapo-
lated values of the exponents are marked by crosses and they
are ν‖ ≈ 1.33 and ν⊥ ≈ 1.12.

to the connectivity exponent ν‖ of the DSP model consid-
ered here. The results of the DSP model is thus in good
agreement with the results obtained in the model calcula-
tion of magnetoresistance of composite materials. Second,
the values of ν‖ and ν⊥ are different from those obtained
in the DP model, ν‖(DP ) = 1.733± 0.001 and ν⊥(DP ) =
1.0972 ± 0.0006 [21] (see Tab. 1 also). Third, the ratio
of the connectivity lengths goes as ξ‖/ξ⊥ ∼ |p − pc|−∆ν

where ∆ν = ν‖ − ν⊥. In DSP, ∆ν is approximately 0.21
whereas in DP, it is approximately 0.64. This means that
clusters in the DSP model are less anisotropic than the
clusters in the DP model at any p. This is due to the
presence of the rotational constraint which tries to make
the clusters isotropic. Barabash et al. [14] assumed that
∆ν = 0. The effective aspect ratio of their problem might
vary as |p − pc|−∆ν with ∆ν = 0.21 as obtained here in
the DSP model. Fourth, (d − 1)ν⊥ + ν‖ is ≈ 2.45 for
d = 2 and 2δ − 3γ ≈ 2.47. The hyperscaling relation
2δ − 3γ = (d − 1)ν⊥ + ν‖ in equation (13) is then sat-
isfied within error bars. Two other hyperscaling relations
ν⊥(df − 1) + ν‖ = 1/σ and (d − 1)ν⊥ − β = ν⊥(df − 1)
given in equation (12) are also satisfied within error bars.
In directed percolation hyperscaling is violated [22]. This
is the first anisotropic percolation model where hyperscal-
ing is satisfied. The values of the connectivity exponents ν‖
and ν⊥ could also be approximated to their nearest ratio-
nal fractions as ν‖ ≈ 4/3 and ν⊥ ≈ 7/6. They satisfy the
hyperscaling relations in equations (12, 13) exactly taking
df = 12/7.

In the above study, it is found that the fractal dimen-
sion df and the values of the critical exponents (τ , σ, β,
γ, ν‖, ν⊥, etc.) of DSP model are different from other

percolation models. As a consequence, the DSP model be-
longs to a new universality class. This is due to the fact
that a completely new type of percolation cluster is gen-
erated in the DSP model. There are three important fea-
tures of the DSP clusters. The clusters are rarefied, have
spiraling danging ends, and are anisotropic. As the clus-
ters grow, more and more vacancies are generated into
the cluster. This is because, the clockwise rotational con-
straint tries to occupy sites away from the directional con-
straint whereas the directional constraint tries to occupy
sites along itself in the x-direction. The effects of these
two counter acting constraints are the following: the spi-
ral clusters (clusters with spiraling dangling ends) become
rarefied, become wider as it is away from the origin (see
Fig. 2), and elongated along a clockwisely rotated direc-
tion from the original globally fixed directional constraint.
The clusters are neither directed percolation clusters nor
spiral percolation clusters. The combined directed and spi-
ral constraints produces highly rarefied anisotropic spiral
clusters. Individually, the effect of these three features,
anisotrpoy [16], spiraling [17], and volume fraction [23],
on the ordinary percolation clusters have been studied.
Each of them corresponds to different critical behaviour
and consequently belongs to new universality class. Here
in DSP model, a new critical behaviour is obtained at the
percolation threshold because of the presence of all three
features in the same cluster.

Finally, the scaling function form assumed for the clus-
ter size distribution Ps(p) = s−τ+1f[sσ(p− pc)] is verified.
The scaled cluster size distribution Ps(p)/Ps(pc) is now
plotted against the scaled variable sσ(p− pc) in Figure 7.
It is assumed that f[0] is a constant. The value of σ is
taken as 0.459. Distribution of 104 clusters over the bins
of width 2i−1 − (2i − 1) with i = 1 to L2 (= 220) is con-
sidered for each p value. In Figure 7, the cluster size s
changes from 64 to 8192 and (p − pc) changes form 0.12
to −0.06. Data for different values of s and (p − pc) col-
lapse reasonably onto a single curve. This means that the
scaling function form assumed for the cluster size distri-
bution is appropriate for this model. Also notice that the
maximum value of Ps(p)/Ps(pc) for DSP model (≈ 3) is
different from that of OP model (≈ 4.5) [4].

5 Conclusion

The new directed spiral site percolation, DSP model,
under both directional and rotational constraints belongs
to a new universality class. The combined directed and
spiral constraints produces a new type of percolation
clusters which are highly rarefied, anisotropic, and spiral
in nature. The critical properties of the cluster related
quantities in this model are very different from the other
percolation models like OP, DP, and SP. The critical
exponent γ of the average cluster size χ is the smallest
and the exponent β of P∞ is the largest among the
four models. The fractal dimension df ≈ 12/7 is the
smallest among the four percolation models and thus
the infinite clusters are highly rarefied here. Since the
clusters generated in this model are anisotropic, two
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Fig. 7. Plot of the scaled cluster size distribution Ps(p)/Ps(pc)
versus the scaled variable sσ(p − pc) for different values of p
with σ = 0.459. The cluster size s changes from 64 to 8192.
The data plotted correspond to p − pc = 0.12 (×), 0.11 (�),
−0.03 (©), −0.04 (�), −0.05 (♦), and −0.06 (�). A reasonable
data collapse is observed.

connectivity lengths, ξ‖ and ξ⊥, are defined to describe
the scaling behaviour of the clusters connectivity as
p → pc. The exponents ν‖ and ν⊥, associated with
ξ‖ and ξ⊥, are estimated. The finite size effect on the
exponent values is also checked making simulations on
different system sizes and the values of the exponents
are extrapolated to the infinite network. It is found that
ν‖ is approximately equal to the connectivity exponent
ν = 4/3 of the OP model which is also in good agreement
with the correlation length exponent ν obtained by
Barabash et al. [14] in the study of magnetoresistance of
a model composite material. Both ν‖ and ν⊥ are different
from those obtained in the DP model. The order of
anisotropy ξ‖/ξ⊥ is higher in the DP clusters than that
of the clusters in the DSP model at any p. The critical
exponents of the DSP model satisfy the scaling relations
within error bars including the hyperscaling which is
violated in the DP model. This is the first anisotropic
percolation model where the hyperscaling is satisfied. The
assumed scaling function form Ps(p) = s−τ+1f[sσ(p− pc)]
of the cluster size distribution Ps(p) is verified through
data collapse. The values of all the critical exponents are
suggested in terms of rational fractions and it is observed
that those rational fractions satisfy the scaling relations
exactly. The proposed rational fractions for the values of
the critical exponents might be verified through an exact
solution of the model. A difficulty in solving the model
exactly is in the reoccupation of the same sites from
different directions. The model will be applicable to the
physical situations where both the directional and rota-
tional constraints are present. For example, measurement

of magnetoresistance in composite materials, magnetic
semiconductors, and super-ionic conductors could be stud-
ied using this model if it is extended to 3 dimensions. The
model will also be applicable in studying the rheological
properties of electro-rheological and magneto-rheological
fluids in presence of crossed electric and magnetic fields.

The author thanks Indrani Bose for helpful discussions and
critical comments on the manuscript.
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